Лекция 28

ЭЛЕМЕНТЫ ЦИФРОВОЙ ЭЛЕКТРОНИКИ

План

- 1. Базовые логические элементы.
- 2. Логический инвертор.
- 3. Логический инвертор на биполярном транзисторе.
- 4. КМОП-инвертор.
- 5. Выводы.

1. Базовые логические элементы

Функционирование устройств цифровой электроники проходит в двоичной системе счисления, оперирующей двумя цифрами: нуль (0) и единица (1). Математическим аппаратом, на основе которого реализуются цифровые устройства, является алгебра логики.

Основные операции алгебры логики – логическое сложение, логическое умножение и логическое отрицание.

Логическое сложение (операция ИЛИ): F = A + B, читается «А или В». Эта операция означает, что сложное высказывание истинно, если истинно хотя бы одно из простых высказываний или истинны оба высказывания. Операцию логического сложения называют *дизъюнкцией*.

Логическое умножение (операция И): F = A * B, читается «А и В» Эта операция означает, что сложное высказывание истинно лишь тогда, когда истинны все простые высказывания. Операцию логического умножения называют конъюнкцией.

Логическое отрицание (операция НЕ, *погическое отрицание*): $F = \overline{A}$, читается «не A ». Эта операция означает, что результирующее высказывание истинно, если исходное ложно, и наоборот.

Основные логические функции могут быть реализованы с помощью электронных схем, называемых *погическими элементами*. Эти схемы имеют один или несколько входов и, как правило, один выход. Уровень напряжения на выходе логической схемы определяется уровнями напряжения на входах и характером реализуемой логической функции.

С помощью элементов, реализующих логические функции И, ИЛИ, НЕ можно создать цифровую схему, осуществляющую сколь угодно сложную логическую операцию. Поэтому такие элементы называют *базовыми*.

Существует множество базовых логических элементов, различающихся схемотехнической реализацией, конструкцией и технологией изготовления,

напряжением питания, быстродействием, потребляемой мощностью и другими параметрами. В интегральной схемотехнике используют элементы И-НЕ, а также ИЛИ-НЕ. Каждый из этих элементов позволяет реализовать все виды логических операций. Например, элемент НЕ легко получается как из элемента ИЛИ-НЕ, так и из элемента И-НЕ параллельным соединением входов.

На различных этапах развития цифровой техники использовались резистивно-транзисторная логика (РТЛ), диодно-транзисторная логика (ДТЛ), транзисторно-транзисторная логика (ТТЛ), эмиттерно-связанная логика (ЭСЛ), логика на МОП-транзисторах и т. д. Логики РТЛ и ДТЛ в настоящее время не применяются. Элементы ТТЛ-логики широко использовались в микросхемах малой и средней степени интеграции в 70–80 годы XX в. Значительное распространение они имеют и теперь. Однако при построении современных цифровых систем большой и сверхбольшой степени интеграции (БИС и СБИС) доминирующей является КМОП-логика. Перспективными являются логические элементы на совмещенных биполярных и МОП-транзисторах — БиКМОП-логика. В таких элементах сочетаются преимущества биполярных и МОП-технологий.

2. Логический инвертор

Инвертор реализует функцию НЕ и является простейшим базовым логическим элементом. Свойства инвертора характеризует его передаточная характеристика $U_{\rm вых}=f(U_{\rm вx})$, представляющая зависимость выходного напряжения $U_{\rm вых}$ от медленно изменяющегося напряжения на входе $U_{\rm вx}$. Передаточная характеристика инвертора показана на рис. 28.1.1. Высокий уровень напряжения соответствует логической единице, а низкий – логическому нулю.

Передаточная характеристика инвертора на рис. 28.1 имеет три области. Область I соответствует логической единице на выходе, область III – логическому нулю. Область II является переходной. В этой области инвертор работает как усилитель.

Высокий уровень напряжения на выходе инвертора не зависит от точного значения входного напряжения, пока последнее не превысит величину $U_{\rm BX}^0$. Таким образом, $U_{\rm BX}^0$ — это максимальное значение входного напряжения, соответствующее логическому нулю. Точно так же низкий уровень выходного напряжения не зависит от величины входного напряжения, если оно остается больше величины $U_{\rm BX}^1$. Следовательно, $U_{\rm BX}^1$ — это минимальное значение входного напряжения, соответствующее логической единице.

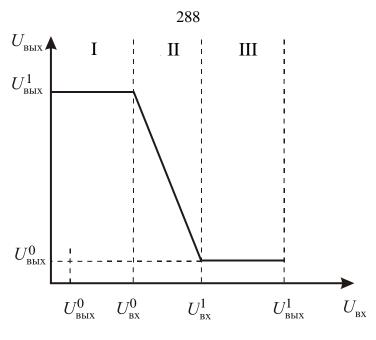
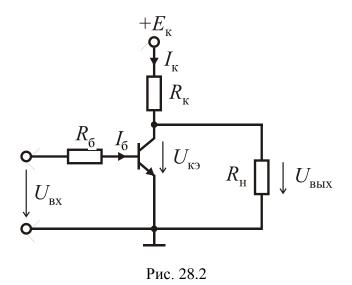



Рис. 28.1

3. Инвертор на биполярном транзисторе

Простейший инвертор на биполярном транзисторе показан на рис. 28.2. Резистор R_6 в цепи базы служит для задания необходимого тока базы. Резистор $R_{\rm K}$ является внутренней нагрузкой инвертора, а резистор $R_{\rm H}$ — его внешней нагрузкой. Величина внешней нагрузки может меняться в широких пределах. При $R_{\rm K}=\infty$ инвертор работает в режиме холостого хода. Предельной нагрузкой, при которой инвертор еще должен сохранять свои параметры, считают величину $R_{\rm K}=R_{\rm H}$.

Рассмотрим статический (по постоянному току) и динамический режимы работы инвертора.

Статический режим. В статическом режиме логический инвертор может быть закрыт (транзистор находится в режиме отсечки) либо открыт (транзистор находится в режиме насыщения). Инвертор закрыт, когда напряжение на входе меньше напряжения логического нуля $U_{\rm BX}^0$. Для инверторов на кремниевых биполярных транзисторах оно составляет 0.4-0.5 В. В этом режиме $I_{\rm K}=I_{\rm G}\approx 0$, $U_{\rm K9}=E_{\rm K}-R_{\rm K}I_{\rm K}\approx E_{\rm K}$. Сопротивление закрытого инвертора составляет сотни кОм.

Если на входе действует импульс напряжения такой величины, чтобы транзистор находился в режиме насыщения, то ток базы

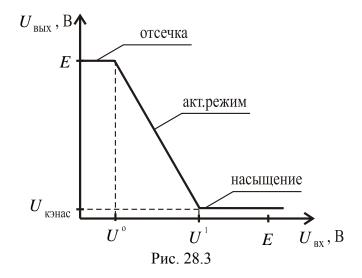
$$I_{\rm G} = \frac{U_{\rm BX} - U_{\rm G9}}{R_{\rm G}} \approx \frac{U_{\rm BX}}{R_{\rm G}}.$$

В режиме насыщения оба перехода смещены в прямом направлении, и ток коллектора возрастает до наибольшего значения:

$$I_{\scriptscriptstyle \mathrm{K}} = I_{\scriptscriptstyle \mathrm{KHac}} = \frac{E_{\scriptscriptstyle \mathrm{K}} - U_{\scriptscriptstyle \mathrm{K}9}}{R_{\scriptscriptstyle \mathrm{K}}} pprox \frac{E_{\scriptscriptstyle \mathrm{K}}}{R_{\scriptscriptstyle \mathrm{K}}} \, .$$

Напряжение U_{κ_9} в режиме насыщения составляет 0.2–0.3 В, а выходное сопротивление — несколько десятков Ом. Для насыщения транзистора необходимо, чтобы ток базы стал больше минимального значения, при котором начинается насыщение транзистора:

$$I_{\rm f} > \frac{I_{\rm KHaC}}{\beta} \approx \frac{E_{\rm K}}{\beta R_{\rm K}}$$
.


Глубину насыщения транзистора характеризуют коэффициентом (степенью) насыщения, который определяет, во сколько раз реальный ток базы превосходит минимальное значение, при котором имеет место режим насыщения:

$$S = \frac{I_{6}}{I_{6 \text{ mag}}}.$$

Величину коэффициента насыщения выбирают от 1.5 до 3.

Транзистор должен входить в режим насыщения, когда входное напряжение превышает напряжение логической единицы $U_{\rm Bx}^1$. Для инверторов на биполярных транзисторах $U_{\rm Bx}^1 \approx 1.5~{\rm B}$.

Передаточная характеристика инвертора на БТ показана на рис. 28.3. Рабочими являются участки переходной характеристики, соответствующие отсечке и насыщению.

Динамический режим работы инвертора. Переходные процессы в инверторе на биполярном транзисторе определяются следующими причинами.

- 1. Наличием емкостей эмиттерного и коллекторного переходов. При переключениях происходит заряд и разряд этих емкостей.
- 2. Накоплением и рассасыванием неосновных носителей в базе при переходе транзистора в режимы насыщения и отсечки.

Рассмотрим упрощенно процессы в транзисторе при действии на входе прямоугольного импульса (рис. 28.4). На интервале времени $0-t_1$ инвертор закрыт. Процесс открывания инвертора после подачи входного импульса можно разделить на три этапа: задержка фронта, формирование фронта и накопление избыточного заряда в базе.

3aдержка фронта коллекторного тока t_3 — это интервал времени между моментом начала действия импульса и моментом, когда ток коллектора достигает значения, равного $0.1I_{\rm khac}$. Задержка фронта обусловлена зарядом барьерной емкости эмиттерного перехода.

С момента начала отпирания транзистора начинается формирование фронта выходного импульса (интервал t_{ϕ} на рис. 28.4). Когда ток коллектора достигает уровня $I_{\kappa \text{нас}}$, напряжение на коллекторе уменьшается до величины $U_{\kappa \text{энас}}$. Ток базы достигает величины $I_{\text{бнас}}$ и продолжает увеличиваться, а в базе происходит накопление неосновных носителей.

Общее *время включения* $t_{\text{вкл}}$ складывается из времени задержки и длительности фронта:

$$t_{\rm вкл} = t_{\rm 3} + t_{\rm ф}.$$

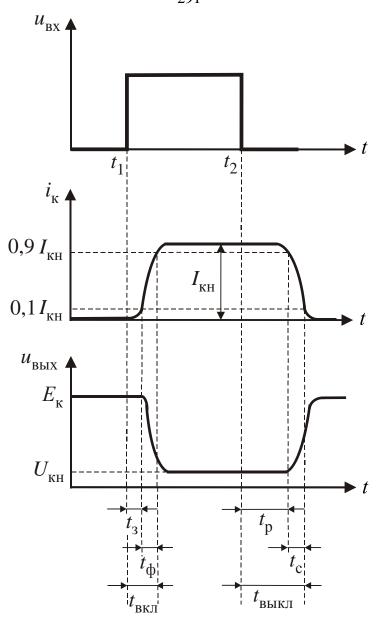


Рис. 28.4

После окончания действия входного импульса начинается рассасывание избыточного заряда в базе. За счет этого коллекторный ток не меняется в течение времени $t_{\rm P}$. Затем начинается спад коллекторного тока. Одновременно растет напряжение коллектора. Общая длительность выключения

$$t_{\text{выкл}} = t_{\text{P}} + t_{\text{c}}$$
.

Здесь $t_{\rm c}$ – время спада коллекторного тока.

Основным фактором, ограничивающим быстродействие инвертора на рис. 28.2, является насыщение транзистора. Время рассасывания $t_{\rm P}$ существенно превышает остальные временные интервалы.

Для исключения глубокого насыщения транзистора коллекторный переход шунтируют диодом Шоттки (рис. 28.5), имеющим малое время переключения, низкое напряжение отпирания (0.2–0.3 В) и малое сопротивление в открытом состоянии.

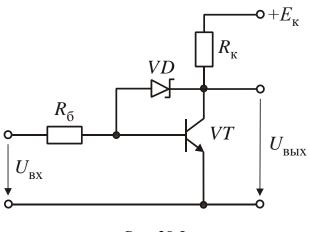
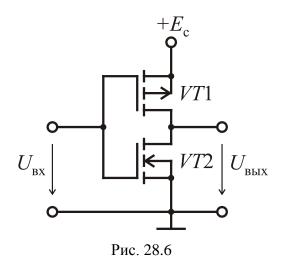


Рис. 28.5

Когда транзистор открыт и находится в активном режиме, напряжение коллектор-база положительно ($U_{\rm ko}>0$), и к диоду приложено обратное напряжение. С ростом коллекторного тока напряжение на коллекторном переходе уменьшается и диод открывается. Последующее увеличение тока базы приводит к увеличению тока через диод. Поскольку напряжение отпирания диода Шоттки меньше напряжения отпирания коллекторного перехода, последний остается закрытым и накопление неосновных носителей в базе транзистора не происходит.

Таким образом, увеличение быстродействия инвертора с диодом Шоттки происходит в основном за счет уменьшения времени рассасывания при выключении. Выходное напряжение такого инвертора в открытом состоянии больше, чем напряжение транзистора в режиме насыщения.


Изготавливаются диоды Шоттки на общем кристалле одновременно с остальными элементами в едином технологическом процессе. Транзисторы с диодами Шоттки часто называют *транзисторами с барьером Шоттки* или *транзисторами Шоттки*.

4. Инвертор на КМОП-транзисторах (КМОП-инвертор)

Инвертор с минимальным потреблением мощности можно реализовать на комплементарной (дополняющей) паре полевых транзисторов (рис. 28.6). В такой схеме используются два МОП-транзистора с индуцированными каналами *n*- и *p*-типов. Подложки обоих транзисторов соединены с истоками.

Статический режим работы КМОП-инвертора. Если входное напряжение равно нулю, то транзистор VT2 находится в состоянии отсечки.

Напряжение затвора p-канального транзистора VT1 равно $-E_c$, напряжение $U_{\rm cul} \approx 0$, и он находится в линейном режиме. Таким образом, при $U_{\rm BX} = 0$ выходное напряжение $U_{\rm BMX} \approx E_c$.

Эквивалентная схема КМОП-инвертора, соответствующая случаю, когда входное напряжение имеет низкий уровень, показана на рис. 28.7, a. Транзистор VT2 эквивалентен разомкнутому идеальному ключу. Ненулевое сопротивление VT1 моделируется резистором $R_{\rm cul}$. Его сопротивление

$$R_{\rm cul} = \frac{1}{b_1 (E_{\rm c} - U_{01})}.$$

Если входное напряжение имеет высокий уровень $U_{\rm вx}>U_0$, то транзистор VT2 находится в состоянии насыщения, а VT1 — отсечки, и выходное напряжение не превышает $10~{\rm mB}$. Эквивалентная схема инвертора для этого случая показана на рис. $28.7,~\delta$. Теперь транзистор VT1 эквивалентен разомкнутому ключу, а ненулевое сопротивление VT2 моделируется резистором $R_{\rm cu2}$, сопротивление которого

$$R_{\text{\tiny CM2}} = \frac{1}{b_2 (E_{\text{\tiny c}} - U_{02})}.$$

Транзисторы в схеме инвертора рассчитывают так, чтобы они были согласованы, т. е. имели одинаковые (по модулю) пороговые напряжения и удельные проводимости:

$$|U_{01}| = U_{02},$$

$$b_1 = b_2 = b.$$

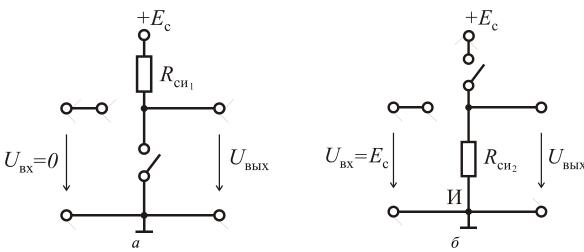


Рис. 28.7

Этим обеспечивается одинаковая нагрузочная способность инвертора как в открытом, так и в закрытом состояниях. Поскольку приповерхностная подвижность дырок μ_p в 2–4 раза меньше подвижности электронов μ_n , для согласования ширину канала транзистора VT1 выбирают в 2–4 раза большей, чем у VT2. Длина каналов обоих транзисторов одинакова, а ширину выбирают так, чтобы выполнялось равенство

$$\frac{W_p}{W_n} = \frac{\mu_n}{\mu_n}.$$

Динамический режим работы КМОП-инвертора. Переходные процессы в МОП-инверторах обусловлены в основном перезарядом емкостей, входящих в состав нагрузки. Типичные значения суммарной емкости у инверторов, использующих транзисторы с длиной канала менее 1 мкм, не превышают 1 пФ.

Заряд емкости происходит через открытый транзистор VT1 при закрытом VT2, а разряд — через VT2 при закрытом VT1. Если транзисторы согласованы, т. е. их удельные проводимости одинаковы, длительность переходных процессов в обоих случаях примерно равна.

Время переключения схемы из состояния логической единицы в состояние логического нуля определяют с помощью приближенного равенства

$$t_{10} \approx \frac{1.6C_{_{\rm H}}}{bE_{_{\rm C}}}.$$
 (28.1)

Полученное выражение является приближенным. Его значение состоит в первую очередь в том, что оно позволяет оценивать влияние параметров цепи на время переключения. Если транзисторы в схеме инвертора согласо-

ваны, то время переключения из состояния логического нуля в состояние логической единицы t_{01} также определяется формулой (28.1).

Из (28.1) следует, что для уменьшения времени переключения необходимо уменьшить суммарную емкость и увеличить напряжение питания E_c . Однако при увеличении E_c растет и мощность, потребляемая инвертором. Поэтому главный путь увеличения быстродействия – уменьшение емкости $C_{\rm H}$.

Перечислим основные свойства КМОП-инвертора.

1. В обоих состояниях инвертора один из транзисторов заперт, поэтому ток в цепи между источником и землей ничтожно мал, и в статическом режиме схема практически не потребляет мощность от источника питания. Динамические потери, т. е. мощность, рассеиваемая КМОП-инвертором при тактовой частоте f, определяются формулой

$$P_d = fCE^2$$
.

Из последнего равенства следует, что для уменьшения динамических потерь необходимо уменьшать емкость нагрузки и напряжение питания схемы. Однако уменьшение напряжения приводит к снижению быстродействия. Поэтому главным путем повышения быстродействия и снижения потерь является уменьшение емкостей транзисторов и нагрузки.

- 2. В обоих статических состояниях выход схемы подключен к общей шине или источнику питания через небольшие сопротивления каналов открытых транзисторов. Поэтому выходное напряжение равно нулю или напряжению питания и почти не зависит от параметров транзисторов.
- 3. Разность выходных напряжений инвертора в закрытом и открытом состояниях максимальна (близка к величине напряжения питания E). Это обеспечивает высокую помехоустойчивость схемы.
- 4. КМОП-инверторы обладают значительно большей нагрузочной способностью, чем инверторы на биполярных транзисторах. Входное сопротивление МОП-ттранзиистора бесконечно велико. Поэтому к его выходу можно подключить большое число аналогичных инверторов. При этом уровень выходного напряжения практически не изменится. Однако каждый дополнительный инвертор увеличивает емкость нагрузки, что приводит к замедлению переключения инвертора из одного логического состояния в другое.

КМОП-инвертор является практически идеальным логическим инвертором. Его быстродействие оказывается значительно выше, чем у других типов инверторов. Совершенствование технологии производства КМОП-интегральных схем привело к тому, что в настоящее время они стали доминирующими при производстве цифровых схем не только высокой, но и средней степени интеграции.

5. Выводы

- 1. Функционирование устройств цифровой электроники проходит в двоичной системе счисления. Математическим аппаратом, на основе которого реализуются цифровые устройства, является алгебра логики.
- 2. Основные логические функции могут быть реализованы с помощью электронных схем, называемых логическими элементами. Эти схемы имеют один или несколько входов и, как правило, один выход. Уровень напряжения на выходе логической схемы определяется уровнями напряжения на входах и характером реализуемой логической функции.
- 3. С помощью базовых логических элементов, реализующих функции И, ИЛИ, НЕ можно создать цифровую схему, осуществляющую сколь угодно сложную логическую операцию.
- 4. КМОП-инвертор является практически идеальным логическим инвертором. Его быстродействие оказывается значительно выше, чем у других типов инверторов.