Работа 4.2. Исследование дифференциального усилителя на МОП-транзисторах

Цель работы: исследование характеристик дифференциальных усилителей на МОП-транзисторах.

Порядок выполнения работы

- 1. Собрать схему дифференциального усилителя (рис. 4.2.3) и установить значения элементов в соответствии с номером варианта (табл. 4.2.1).
- 2. Включить на входе источники дифференциального и синфазного сигналов (рис. 4.2.3) (источники синусоидального напряжения VSIN из библиотеки SOURCE.slb). Установить атрибуты источников: DC = 0, AC = 1V, VOFF = 0. Атрибуты VAMPL и FREQ установить в соответствии с номером варианта (табл. 4.2.2). Частоту источника синфазного сигнала установить в соответствии с номером варианта.
- 3. Скопировать моделируемую цепь в отчет.
- 4. Исследование ДУ при действии дифференциального сигнала.
- 4.1. Амплитуду источника синфазного сигнала установить равной нулю (атрибут VAMPL = 0). Установить временной интервал для режима Transient равным 3T, где T период дифференциального сигнала.
- 4.2. В режиме Transient получить и скопировать в отчет графики входного и выходного напряжений, входного тока. Определить коэффициент усиления и входное сопротивление для дифференциального сигнала.
- 4.3. Используя режим DC Sweep построить и скопировать в отчет передаточную характеристику усилителя для дифференциального сигнала. Диапазон изменения входного сигнала от 0 до 50 мВ. Определить динамический диапазон для дифференциального сигнала.
- 4.4. С помощью режима АС Sweep построить и скопировать в отчет амплитудно-частотную характеристику усилителя для дифференциального сигнала.
- 5. Исследование дифференциального усилителя при действии синфазного сигнала.
- 5.1. Установить амплитуду источников дифференциального сигнала равной нулю. Установить амплитуду источника синфазного сигнала (атрибут VAMPL) в соответствии с номером варианта (табл. 4.2.2). Установить

- временной интервал для режима Transient равным 3T, где T период синфазного сигнала.
- 5.2. В режиме Transient получить и скопировать в отчет графики входного и выходного напряжений, входного тока. Определить коэффициент усиления и входное сопротивление для синфазного сигнала.
- 5.3. Используя режим DC Sweep построить и скопировать в отчет передаточную характеристику усилителя для синфазного сигнала. Определить динамический диапазон для синфазного сигнала, изменяя амплитуду синфазной составляющей от $-E_{\kappa}$ до $+E_{\kappa}$.
- 5.4. С помощью режима AC Sweep построить и скопировать в отчет амплитудно-частотную характеристику усилителя для синфазного сигнала
- 6. Исследование ДУ при действии дифференциального и синфазного сигналов
- 6.1. По результатам п. 4 и 5 определить коэффициент ослабления синфазной составляющей K_{occ} .
- 6.2. Установить амплитуды дифференциальной и синфазной составляющих в соответствии с номером варианта. Включить режим моделирования. Временные диаграммы входного и выходного сигналов скопировать в отчет.

Таблица 4.2.1

Bap.	E, B	J ₀ , мкА	Размеры транзисторов			C _{load} , пФ	Число параллельно включенных транзисторов					
			L,	WP,	WN, MKM		M1	M2	M3	M4	M5	M6
1	1.2	100	0.12	10	5	5	16	16	4	4	64	64
2	2.5	50	0.24	15	6	75e-3	12	12	4	4	20	20
3	4.2	225	0.6	15	7	75e-3	30	30	10	10	60	60
4	1.8	100	0.18	10	5	75e-3	8	8	2	2	16	16
5	3.3	75	0.4	14	4	3	16	16	8	8	16	16

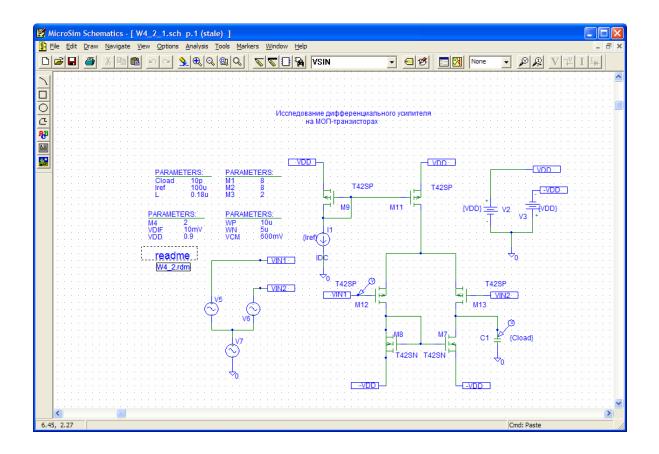


Рис. 4.2.3

Таблица 4.2.2. Параметры входных сигналов

Bap.		циальный нал	Синфазный сигнал			
1	$U_{\scriptscriptstyle m}$, м B	f,κΓų	U_{m}, B	f, Γų		
1	10	1	0.5	50		
2	20	1	1.5	0		
3	20	1.5	0.5	50		
4	30	1	0.8	60		
5	25	0.8	1.2	100		
6	30	1.2	1.5	150		
7	25	1	1	0		
8	15	1	0.5	50		
9	20	1.5	1	60		
10	10	1	0.8	0		